World Conference for TOKYO Resilience：Aiming for＂Safety for the Next 100 Years＂ 8 May 2024 Italian Cultural Institute Tokyo 16：30－17：45 Pannel Discussion

Building Bridges of Knowledge and Practice A Path Forward Through Resilience and Collaboration

The MO．S．E．in Venice Resilient Storm Surge Protections

Giovanni Cecconi，Venice Community Lab www．venicelab．net＋39 3351379177 ceccogio＠gmail．com

The Venice Eagoon
 $29-2=1$

Sustainability / Environmental protection / Collective value

Population and economic activities

Sustainability / Environmental protection / Collective value

Historical, artistic and environmental heritage

Protecting the lagoon from/sedimentation

Coastal protection

XIV century

> Reinvention of Pozzolanic cement

CLIMATE CHANGE : 10 X frequent floods and

6 X extreme floods >148 cm

4 novembre 1966	194 cm
12 novembre 2019	187 cm
22 dicembre 1979	166 cm
1 febbraio 1986	159 cm
1 dicembre 2008	156 cm
29 ottobre 2018 (h 14,40)	156 cm
15 novembre 2019	154 cm
12 novembre 1951	151 cm
17 novembre 2019	150 cm
11 novembre 2012	149 cm
29 ottobre 2018 (h 20,25$)$	148 cm
22 novembre 2022 - attivazione	Mose (187cm)

6 X extreme floods $>148 \mathrm{~cm}$

4 novembre 1966	194 cm
12 novembre 2019	187 cm
22 dicembre 1979	166 cm
1 febbraio 1986	159 cm
1 dicembre 2008	156 cm
29 ottobre 2018 (h1440)	156 cm
15 novembre 2019	154 cm
12 novembre 1951	151 cm
17 novembre 2019	150 cm
11 novembre 2012	149 cm
29 ottobre 2018 (1420,25)	148 cm

22 novembre 2022 - attivazione Mose (187 cm)

(Changes of the mean sea level in Venice from 1872 to 2022 and 11-years moving average)

(he limits of local acaotation

The Imits of local acaotation
The Imits of local acaotation
The Imits of local acaotation
The Imits of local acaotation

The Imits of local acaotation

What has been done by Consorzio Venezia Nuova, Concessionaire of Magistrato Acque, Min.Pub.Works, in 35 years, spenditure of 12 billion euro

Mose System a combined solution

Local Protection: tide<110cm

\& Mobile Barriers: tide $>110 \mathrm{~cm}$

MO.S.E.

General Strategy

SHIP DELAYS PORT AUTHORITY'S OPERATIONAL NEEDS

LOCAL PROTECTIONS BABY MOSE IN CHIOGGIA AND ST. MARK'S

PLANTS POSSIBLE SYSTEM PROBLEMS

METEO MARINE MARINE DATA AND FORECASTS

MO.S.E.

Differential Operations of the MOSE System

1. On/Off closures and partial closures of one or more barriers or subset of flaps in each a barrier
2. Water quality and sediment/wetland issues

MO.S.E.

On/Off Use:

- A single closure
- More closures to deal with particular weather situations
- Modulated closures (Need to close/reopen Chioggia and/or Malamocco for special navigational needs)
- Partial closure (only Lido) to reduce the impact on navigation and induce tidal flushing

MO.S.E.

Water quality and sediment/wetland issues and nesting

Preventing pollution

Easy the collection spillage of pollutants in the lagoon
or prevente inputs from the sea or rivers

Environmental Use

Induce tidal flushing against anoxia
Reduce sediment loss from tidal flats to channels and sea
Facilitate Wetland starting process
Bird nesting and reproduction

Unexpected new island induced by the Mose closures limiting winter shoal overtopping

Concluding remarks

- Venice protected from floods in times of climate change and the quality of the environment has been improved.
- Great flexibility thanks to possibility to operate the system with partial closure of the barriers for environmental and social benefits

Multi-disciplinary knowledge and experience in managing complex socio-ecological system (l-Storm founding member)

Venice is an easy accessible living lab for other coastal cities facing climate and social changes

Le barriere mobiliè probabile che, come conseguenza degli effetti congiunti dei dislivelli generati dal vento e dell'eustatismo debbano essere manovrate d'inverno quasi tutti i giorni

External Harbour

Env./ Port Mose Operation

Venice After Mose

A Lagoon Water Farm

Co-evolution

Back to the future

Regulated waters, horticulture, urban park, inner littoral, power production, renewable energies, safe fishing and marinas around the historical city

Venice Lab Adaptive Hospitality

Venice continue to be the oldest city of the future practicing formal and informal exchanges with other water cities
for environmental restoration and disaster risk reduction.

This knowledge is also available both by institutional exchanges and by local community interactions (Bottom-Up) for adaptive hospitality

Thank you for your attiention !

Founder of

Venice Lab Adaptive Hospitality for Global Communities

Mose System

Constraints, guidelines and design criteria
A. The system of defence against high waters must not introduce significant changes in :

- the water exchange at the inlets
- the landscape
- the economic activities
B. Maintain the characteristics of experimental, reversible and gradual

G. Cecconi, E.Zambardi at Treporti Conducting the First Mose Full ClosureTest

Work started 2003;
 Start of Flood protection 3.Oct.20; Main Completion 31.12.23; Hand-over 31.12.25

Mose Storm Surge Barriers Foundations

Mobile barriers
 How do they work

< Lagoon
Hinge
Sea>

Bin
B20:3

Gate housing caissons

Operation

Immissione aria compressa ed espulsione acqua

Start of lifting

Lifting to surface

Working Position

Main Components of the system

Defence against exceptionally high tide

Mobile barriers
 Pneumatic system

- Air inlet
, Water outlet

Lifting of the flap gates (Malamocco)

A gate chosed among many other solutions:

1. Fixed Flap Gate
2. Row of Free Flap Gates
3. Reverse Fixed Flap Gate
4. Drummer
5. Bear Trapp
6. Ship Door
7. Butterfly
8. A Helmet Concealment
9. Sector Air
10. Sector into the Bottom

11. Inflatable pillow
12. Inflatable pillow and sail
13. Mantice
14. Massive Flap on Rails
15. Buoyant Vertical caisson

Nieuwpoort (concept)

Mose System

Ramspol Barrier

Thames Barrier

Marina Barrage

Hull Barrier

Maeslant Barrier

Incuath Rarriar

Hollandsche IJssel Barrier

Bayou St John Sector Gate

Lake Borgne Surge Barrier

Storm surge barriers
within the I-STORM network

Lido Inlet

Malamocco inlet

Chioggia inlet

Integrated solutions for a complex system

The Venice lagoon Safeguard and The Mose System

Littoral Protection

56 km protected beach nourischment
12 km constructed coastal dunes
11 Km reinforced breakwaters

MOSE 1,6 km, 78 Flap gates, 4 barriers at 3 inlets Lido Nord 420 m; Lido Sud 400m; Malamocco 380m; Chioggia 360m

Local flood Protection

100 km of urban and lagoon embankments raised and reinforced

Morphological and Environmental restoration

 40 km of industrial canal banks12 islands
7 dumps sites
39 ha of phytodepuration areas
39 km wave protection of salt marshes
16 km 2 of Building with Nature salt marshes

Coastal Protection

56 km
Protected beach nourishment

12 km
Dune Restoration

11 km
Reinforced Breakwaters

Coastal Protection
 Venetian coastline(November 1966)

Coastal Protection

Protected Beach Nourishment

- Pellestrina
Before 1999

Protected Beach Nourishment Pellestrina

After 2000

Environmental Restoration and resilience

16 km ${ }^{2}$
Constructed salt marshes

39 km
Wetland wave protection

12
Number of island restored and protected

Environmental Restoration and Resilience
Constructed salt-marshes and tidal-flats
reusing sediments from channel maintenance dredging

Environmental Restoration and resilience

Environmental Restoration and resilience

Restoration of Historical Island

1. Motta Millecampi
2. Fisolo
3. Poveglia
4. Lazzaretto vecchio
5. Armeni
6. S. Servolo
7. Campalto
8. Certosa
9. Lazzaretto nuovo
10. S. Giacomo
in paludo
11. S. Francesco del deserto
12. Laghi
13. Torcello

Poveglia Island Restoration

1. Octagon Restoration/Consolidation
2. Renovation / consolidation of masonry banks
3. Side reinforcement
4. Rehabilitation / redevelopment of the internal canal
5. Cavana renovation

Environmental Protection

Environmental Protection

Environmental Protection

Protection of dump sites

Dopo i lavori

Urban local flood protection and restoration

100 km
Elevation and flood protctcion of urban space

Local flood protection and restoration

Urban local filood protection and restoration-

Urban local-flood protection and restoration

Urbah Io al lood protection and restoration

 Loca unbaliad adaptation to sea level rise

Piawra San Marco problems and first interventions

Le barriere mobili per la difesa dalle acque alte

Mobile barriers at the lagoon inlets

General Layout of the works

Malamocco inlet Layout of the works

1. North side abutment
2. South side abutment and main plant area
3. Navigation lock
4. Temporary work area
5. Breakwater

Chioggia inlet
 Layout of the works

1. Refuge port
2. Navigation locks
3. North side abutment
4. South side abutment
5. Main plant area

Main components of the system

Gate housing caisson and abutment caisson

Hinges

Floodgates

Main components of the system

Gate housing caissons

Main components of the system
Gate housing caissons. Construction

THE SINGLE FLAP GATE

Hinge Coupling Assembly

(1) Male Element (hooked to the gate)
(2) Female Element (fixed on the top surface of the housing body)
(3) Coupling unit (for the connection between male and female)
(4) Anchor bars
(for fixing the female to the housing body of the sluice gates)

Main components of the system

Floodgates. Installation

Lido sud barrier

Electromechanical systems

Main plants

Pneumatic system (process air) Compressor cooling water system Electrical system and generators Control System

Auxiliary systems

HVAC (ventilation and air conditioning)
Flushing system (washing lines and hinges) Diesel system (serving the generators) Special fire extinguishing systems Fire detection and extinguishing Ancillary systems

The new island for plant at Lido inlet

> y2

Lido Treporti construction (2008)

Construction site set-up

and start of construction of structures

Lido Treporti construction (2012)

Lido North

Sluice gate foundations: Width. $60 \mathrm{~m} /$ length $36 \mathrm{~m} /$ H. $8.7 \mathrm{~m} /$ Weight 13,000 tn

Shoulder elements:
Width. $23.8 \mathrm{~m} /$ length $49 \mathrm{~m} /$ H. $16.7 \mathrm{~m} /$ Weight $9,000 \mathrm{tn}$

Lido Treporti construction (May September 2012) 璌/

Launch of structures

Immersed Tunnel and
Abutment Caisson Construction

Caisson launching platform
(Syncrolift)

Transport of an Immersed Tunnel Caisson June-October 2014

Caissons and gates installation

Installation of the caissons (immersed tunnel elements)

Installation
\& Handling
of the flap gates
of the barriers
of Lido Nord
and Malamocco

Gates Installation Temporary Crane

Gates Installation Jack-up barge

$$
5
$$

The "jack up" for handling the gates

MO.S.E. as a flexible system

- The DSS for operating MOSE was developed and tested since 1992, before the work stated to be operated in order to achieve a very high probability of success
- Complementary operations for settling comples social and environmental interactions has been envisaged

MO.S.E. as a flexible system

DSS Required information:

- Real-time meteo- marine data from the lagoon monitoring network
- Weather forecasts from national and international centers (GFS, ECMWF, COSMO5M, LMDET Forecast of marine weather trends (levels, water inputs, effect of the sex, currents......)

MO.S.E. as a flexible system

Storm Surge Operation Based on the Forecast of

Max Water level and Duration > 110 cm
Max water level $\leq 150 \mathrm{~cm}$
$>110 \mathrm{~cm}$ duration $\leq \quad 11$ hours
CLASS C1
Frequency $=99 \%$
Ready to close at $75,80,90 \mathrm{~cm}$

Max water level $>150 \mathrm{~cm}$ $>110 \mathrm{~cm}$ duration >11 hours

CLASS C2
Frequency $=1 \%$
Ready to close at $45,65 \mathrm{~cm}$

Wind $\leq 15 \mathrm{~m} / \mathrm{s}>15 \mathrm{~m} / \mathrm{s}$

Lido Closure

Malamocco Closure

3

Chioggia Closure

Control room: forecast-allert-command-coordination of the closure operations

Removal of the first sluice gate of the Treporti barrier

On July 5, 2023, the first sluice gate of the Lido Treporti barrier was removed after 10 years from its installation

State of the first installed sluice gate at the Treporti barrier

Flap gate after the removal of fouling Steel surface and hinges in excellent state of preservation

State of the first installed sluice gate at the Treporti barrier after 10 year in place underwater

Dumpers

Catodic Anod

Inner surface

Installation of the spare gate at Treporti

0 . Increase the speed of maintenance due to sea level rise

1. Need for multiple replacement sluice gates
2. Increased service interval
3. Possible use of different materials
4. Refinement of the command and control system
5. Digitalization of the system
6. Review of engagement procedures
(efficiency/effectiveness)

Venice has been protected by 84 Closures from 3rd Oct. 2020 to 12th March 2024

Oct.20-March.21: the Mose has reduced 23 tidal peaks, with 20 closures, keeping water levels below 1.03 m P. ta Salute datum

TG Venice today First Storm 3 Oct 2020
Chioggia Storm 2 Dec 2020

MO.S.E. OCTOBER 2023

On November 22, 2022, the third worst storm surge of 2.0 m was kept out of the lagoon

From 19 to 31 October there are 12 high tides. We manage these high tide with MOSE closing 11 times:

1) 1 time only Lido (October, 24 in the morning)
2) 9 times all the barrier for a single high tide
3) 1 time all the barrier for two high tide (October, 30 and 31)

154 cm

148 cm
137 c

MO.S.E. as a flexible system

MO.S.E. as a flexible system

Differential Operations of the MOSE System

1. On/Off closures and partial closures of one or more barriers or subset of flaps in each a barrier
2. Water quality and sediment/wetland issues

MO.S.E. as a flexible system

On/Off Use:

- A single closure
- More closures to deal with particular weather situations
- Modulated closures (Need to close/reopen Chioggia and/or Malamocco for special navigational needs)
- Partial closure (only Lido) to reduce the impact on navigation and induce tidal flushing

MO.S.E. as a flexible system

Water quality and sediment/wetland issues and nesting

Preventing pollution

Easy the collection spillage of pollutants in the lagoon or prevente inputs from the sea or rivers

Environmental Use

Induce tidal flushing against anoxia
Reduce sediment loss from tidal flats to channels and sea
Facilitate Wetland starting process
Bird nesting and reproduction

Unexpected new island induced by the Mose closures limiting winter shoal overtopping

Concluding remarks

- Venice protected from floods in times of climate change and the quality of the environment has been improved.
- Great flexibility thanks to possibility to operate the system with partial closure of the barriers for environmental and social benefits

Multi-disciplinary knowledge and experience in managing complex socio-ecological system (l-Storm founding member)

Venice is an easy accessible living lab for other coastal cities facing climate and social changes

Le barriere mobiliè probabile che, come conseguenza degli effetti congiunti dei dislivelli generati dal vento e dell'eustatismo debbano essere manovrate d'inverno quasi tutti i giorni

A Lagoon Water Farm

Co-evolution

Back to the future

Regulated waters, horticulture, urban park, inner littoral, power production, renewable energies, safe fishing and marinas around the historical city

Venice Lab Adaptive Hospitality

Venice continue to be the oldest city of the future practicing formal and informal exchanges with other water cities
for environmental restoration and disaster risk reduction.

This knowledge is also available both by institutional exchanges and by local community interactions (Bottom-Up) for adaptive hospitality

Thank you for your attiention !

Founder of

Venice Lab Adaptive Hospitality for Global Communities

